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Abstract
Classical dynamical systems can be embedded into a Hilbert space description
by using Bose operators and Glauber coherent states. Thus the embedding in
a Hilbert space allows us to study entanglement of the states. We apply it here
to first integrals which are expressed as states.

PACS number: 03.65.Ud

Ordinary and partial differential equations and ordinary and partial difference equations can
be embedded into linear equations in a Hilbert space using Bose operators and Bose field
operators, respectively [1–4]. Here we consider systems of ordinary differential equations,
autonomous systems of (nonlinear) difference equations and their embedding using Bose
operators and Glauber coherent states. One of the basic tasks in the study of nonlinear
dynamical systems is to find out whether or not the system is integrable. For systems of
ordinary differential equations one has to find the first integrals (if any exists) and for difference
equations one has to find invariants (if any exists). These questions can be investigated with
the help of Bose operators and Glauber coherent states. Glauber coherent states [5] are defined
by applying the displacement operator D(β, β∗) := exp(βb† − β∗b) to the vacuum state |0〉
with the straightforward extension to more than one Bose operator. We study whether first
integrals and invariants both expressed as states in the Hilbert space are entangled [6–9].

There are other embedding techniques so that we can study the entanglement of classical
systems. In the Koopman linearization we embed the system into a Hilbert space of square
integrable functions [10]. Suzuki [11] showed that d-dimensional quantum systems can be
embedded into a (d + 1)-dimensional classical system. Such an example is studied by Vedral
[12]. Gottesman [13] studies the Bose–Hubbard model as a classical Boson model which is a
Markov process. These techniques will not be considered here.
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Consider the initial-value problem for the systems of first-order ordinary differential
equations

du
dt

= V(u), u(0) = u0. (1)

It is assumed that V : Rn → Rn is analytic. Let us now summarize the embedding [1–4]. We
recall that the Bose operators satisfy the commutation relation[

bj , b
†
k

] = δjkI [bj , bk] = [
b
†
j , b

†
k

] = 0,

where I is the identity operator and j, k = 1, 2, . . . , n, bk|0〉 = 0 and

|0〉 ≡ |0〉 ⊗ · · · ⊗ |0〉
denotes the vacuum state. A complete set of state vectors may be written as a product of state
vectors for each mode (Fock states)

|n1〉 ⊗ |n2〉 ⊗ · · · ⊗ |nN 〉,
where nj = 0, 1, . . . ,∞. We have

b
†
j |n1〉 ⊗ · · · ⊗ |nj 〉 ⊗ · · · ⊗ |nN 〉 = √

nj + 1|n1〉 ⊗ · · · ⊗ |nj + 1〉 ⊗ · · · ⊗ |nN 〉
bj |n1〉 ⊗ · · · ⊗ |nj 〉 ⊗ · · · ⊗ |nN 〉 = √

nj |n1〉 ⊗ · · · ⊗ |nj − 1〉 ⊗ · · · ⊗ |nN 〉.
We define the operator

M := b† · V(b) ≡
n∑

j=1

b
†
jVj (b). (2)

Let

|u(t)〉 := exp
(− 1

2 |u(t)|2) exp(u(t) · b†)|0〉 (3)

be a Glauber coherent state (b|u(t)〉 = u(t)|u(t)〉), where

u(t) · b† :=
n∑

j=1

uj (t)b
†
j

and u satisfies equation (1). Furthermore 〈0|0〉 = 1. If we define

|̃u(t)〉 := exp
(

1
2 (|u(t)|2 − |u0|2)

)|u(t)〉, (4)

then
d

dt
|̃u(t)〉 = M |̃u(t)〉 (5)

is the corresponding infinite system. The formal solution of (1) is given by

u(u0, t) = u0 +
∞∑

j=1

(−t)j

j !
〈u0|[M, . . . , [M, b] . . .]|u0〉. (6)

To study the entanglement for a pure bipartite state |ψ〉 (i.e. n = 2) we study the von Neumann
entropy of the reduced density operator of its one component [6–9], i.e.

E(|ψ〉〈ψ |) = −tr(ρ1 log2(ρ1)) = −tr(ρ2 log2(ρ2)). (7)

This means we first calculate the density operator ρ12 = |ψ〉〈ψ | from the pure bipartite state
and then the partial trace to find ρ1 and ρ2. Properties such as concavity, subadditivity, strong
subadditivity and the triangle inequality also follow for this measure of entanglement as they
do for the finite-dimensional case provided the relevant quantities converge when we consider
the infinite-dimensional system. To calculate the partial trace we can either use the number
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basis |k〉 with k = 0, 1, 2, . . . ,∞ or coherent states |β〉. To test quantum nonlocality of the
states, the displaced parity operator

�̂12(α, β) := D1(α)D2(β)(−1)n̂1+n̂2D
†
1(α)D

†
2(β)

based on joint parity measurement can be used, where n̂1 := b
†
1b1 and n̂2 := b

†
2b2. Here D1(α)

and D2(β) are the unitary phase-space coherent displacement operators. Other entanglement
measures such as entanglement of formation, distillable entanglement, relative entropy of
entanglement and logarithmic negativity are difficult to implement for the continuous case
[14].

The most studied case is the two-mode state

|ψ〉 = er(b
†
1b

†
2−b1b2)|00〉,

where r is the squeezing parameter. This state can also be written as

|ψ〉 = 1

cosh(r)

∞∑
n=0

(tanh(r))n|n〉 ⊗ |n〉.

This equation is just the Schmidt decomposition of the state |ψ〉. Then the density operator
is given by ρ12 = |ψ〉〈ψ | and after calculating the partial trace we find for the entanglement
[15, 16]

E(r) = cosh2(r) log2(cosh2(r)) − sinh2(r) log2(sinh2(r)),

where E(r = 0) = 0. The entanglement of this state can be viewed as an entanglement
between quadrature phases in the two modes (EPR entanglement) or as an entanglement
between number and phase in two modes.

If we investigate the case with n � 2 we can also discuss whether the states given by the
first integral are entangled or not. This is a question discussed in quantum computing [6–9].
We consider now the case n = 2 and first integrals of the dynamical system (1) which are
represented by states in the Hilbert space. We apply the entropy of entanglement (sometimes
just called the entanglement) given by (7) as a measure for entanglement. Let us first consider
the Lotka–Volterra model

du1

dt
= −u1 + u1u2

du2

dt
= u2 − u1u2.

Here the associated vector field is given by

V = (−u1 + u1u2)
∂

∂u1
+ (u2 − u1u2)

∂

∂u2
.

The corresponding Bose operator is given by

M† = (−b
†
1 + b

†
1b

†
2

)
b1 +

(
b
†
2 − b

†
1b

†
2

)
b2.

The first integral of the Lotka–Volterra model takes the form

H(u) = u1u2 e−(u1+u2) ≡ u1 e−u1u2 e−u2 .

In the formulation with Bose operators the first integral of the Lotka–Volterra model is the
state vector

b
†
1b

†
2 e−(b

†
1+b

†
2)|00〉.

Consequently, [(−b
†
1 + b

†
1b

†
2

)
b1 +

(
b
†
2 − b

†
1b

†
2

)
b2

]
b
†
1b

†
2 e−(b

†
1+b

†
2)|00〉 = 0
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since LV H = 0, where LV (·) denotes the Lie derivative. The state given by the first integral
for the Lotka–Volterra model is not entangled, i.e. it can be written as the product state

b
†
1b

†
2 e−(b

†
1+b

†
2)|00〉 = (b† ⊗ I )(I ⊗ b†) e−(b†⊗I+I⊗b†)|00〉 = (b† e−b†

) ⊗ (b† e−b†
)(|0〉 ⊗ |0〉)

since b1 = b ⊗ I, b2 = I ⊗ b and e−b†⊗I−I⊗b† = e−b† ⊗ e−b†
, where I denotes the identity

operator. Thus calculating the entropy of entanglement defined by (7) provides E = 0.
We recall that if a pure bipartite state |ψ〉 can be written as |ψ〉 = |φ1〉⊗|φ2〉, then E = 0.
An example of a system with an entangled first integral is the anharmonic oscillator

du1

dt
= u2,

du2

dt
= u1 + u3

1

with the first integral u2
1

/
2 + u4

1

/
4 − u2

2

/
2 and the corresponding state (not yet normalized)

|ψ〉 = (
1
2

(
b
†
1

)2
+ 1

4

(
b
†
1

)4 − 1
2

(
b
†
2

)2)|00〉.
For this state we find that E > 0. Thus it is entangled using the definition given above.

Consider now the case n > 2. In this case the question arises for a measure of
entanglement. For finite-dimensional systems for tripartite states and four qubit states the
geometric invariant theory is utilized using the Lie group SL(2, C). However this cannot be
applied to the infinite-dimensional case. Thus we will apply the basic definition that the state
is entangled if it cannot be written as any combinations of tensor products of states.

As an example, we consider an explicitly time-dependent first integral for the autonomous
systems of first-order ordinary differential equations (1). We extend (1) to

du
dλ

= V (u),
dt

dλ
= 1.

Then

W =
n∑

j=1

Vj (u)
∂

∂uj

+
∂

∂t

is the corresponding vector field of the system. An explicitly time-dependent smooth function
H(u(t), t) is a first integral of the system if LWH = 0. The corresponding Bose operator of
the vector field W is

W 	→ M† :=
n∑

j=1

Vj (b†)bj + bn+1,

where we have identified t with un+1. As an application, we consider an extended Lorenz
model
du1

dλ
= σ(u3 − u1) + σsu5

du2

dλ
= −bu2 + u1u3

du3

dλ
= −u1u2 + ru1 − bu3

du4

dλ
= u1u5 − bτu4 − bτu2

du5

dλ
= −u1u4 + ru1 − τu5 + τu3

dt

dλ
= 1,

where σ, r, b, s, τ ∈ R+, t = u6 and t (λ = 0) = 0. Thus

M† = σ
(
b
†
3 − b

†
1 + sb

†
5

)
b1 +

(−bb
†
2 − b

†
1b

†
3

)
b2 +

(−b
†
1b

†
2 + rb

†
1 − bb

†
3

)
b3

+
(
b
†
1b

†
5 − bτb

†
4 − bτb

†
2

)
b4 +

(−b
†
1b

†
4 + rb

†
1 − τb

†
5 + τb

†
3

)
b5 + b6.

For example for σ = 1, b = 1 and τ = 2 we find the explicitly time-dependent first integral

H(u(t), t) = (
2sru4 + 4sru2 − ru2

1 − (2s − 1)
(
u2

2 + u2
3

))
exp(2t).
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Consequently, we find that the first integral expressed in Bose operators assumes the form of
the state vector(

2srb
†
4 + 4srb

†
2 − rb

†2

1 − (2s − 1)
(
b
†2

2 + b
†2

3

))
exp

(
2b

†
6

)|0〉.
Therefore

M†(2srb
†
4 + 4srb

†
2 − rb

†2

1 − (2s − 1)
(
b
†2

2 + b
†2

3

)
e2b

†
6 |0〉 = 0.

Note the operator b
†
5 does not appear in the state since u5 is not present in the first integral. To

check for entanglement, i.e. if the state cannot be written as a product state across the Hilbert
space we write, using b1 = b ⊗ I ⊗ I ⊗ I ⊗ I ⊗ I etc, the state in the tensor product form

(c1(I ⊗ I ⊗ I ⊗ b†) + c2(I ⊗ b† ⊗ I ⊗ I ) + c3(b
†2 ⊗ I ⊗ I ⊗ I )

+ c4(I ⊗ b†2 ⊗ I ⊗ I ) + c5(I ⊗ I ⊗ b†2 ⊗ I )) ⊗ I ⊗ e2b† |0〉,
where c1 = 2sr, c2 = 4sr, c3 = −r, c4 = (2s − 1), c5 = (2s − 1) and we used that

e2b
†
6 = I ⊗ I ⊗ I ⊗ I ⊗ I ⊗ e2b†

.

Thus the state is a product state with respect to the fifth and sixth modes. Thus with respect to
the fifth and sixth modes the state is not entangled. However for the first four modes the state
is entangled. This can be seen when we consider the underlying polynomial

p(u1, u2, u3, u4) = 2sru4 + 4sru2 − ru2
1 − (2s − 1)

(
u2

2 + u2
3

)
,

which cannot be written as any product of polynomials. For example the polynomial p cannot
be written as u4f (u1, u2, u3) where f again is a polynomial, etc. No factorization is possible.

We could also start from entangled states as the first integral and then construct the
dynamical system which admits this first integral.

We can also study the entanglement for the state |̃u(t)〉 as the solution of (5) which
corresponds to the solution of (1).

We can also introduce a time-dependent density operator ρ(t) for the classical system (1).
We define a density matrix as

ρ :=
∫

Cn

dµ(w) e−|w−u0|2 |w〉〈w|,
where |w〉 is a coherent state and

dµ(w) :=
n∏

j=1

1

π
d(Re wj)(d Im wj).

Thus the density matrix is Hermitian ρ† = ρ and positive ρ � 0. Furthermore tr ρ = 1 and

〈b(t)〉 := tr(ρb(t)) = u(t),

where b(t) are the time-dependent Bose annihilation operators and u(t) satisfies the system of
autonomous differential equations (1). Next we introduce the time-dependent density matrix

ρ(t) =
∫

Cn

dµ(w) e−|w−u0|2 etM |w〉〈w| etM†
,

where M is the operator given by (2). Thus we can define a time-dependent entropy

S(t) := −tr(ρ(t) ln ρ(t)).

Entanglement can also be studied for the autonomous system of first-order ordinary difference
equations

x1,t+1 = f1(x1,t , x2,t ), x2,t+1 = f2(x1,t , x2,t ),
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where t = 0, 1, 2, . . . and we assume that f1 and f2 are analytic functions and x1,0, x2,0 are
the initial values with x1,t , x2,t ∈ R. They also can be embedded in a Hilbert space using Bose
operators and coherent states [4]. The extension to higher dimensions is straightforward. Now
we describe how invariants can be expressed as Bose operators. To embed this system into a
Hilbert space using Bose operators b

†
j , bj with j = 1, 2 we consider the Hilbert space states

|x1, x2, t〉 := exp
(

1
2

(
x2

1,t + x2
2,t − x2

1,0 − x2
2,0

))|x1,t , x2,t 〉,
where |x1,t , x2,t 〉 is the normalized coherent state

|x1,t , x2,t 〉 := exp
(− 1

2

(
x2

1,t + x2
2,t

))
exp

(
x1,t b

†
1 + x2,t b

†
2

)|0〉.
Next we introduce the evolution operator

M̂ :=
∞∑

j=0

∞∑
k=0

b
†j
1

j !

b
†k
2

k!
(f1(b1, b2) − b1)

j (f2(b1, b2) − b2)
k.

It follows that

|x1, x2, t + 1〉 = M̂|x1, x2, t〉,
where t = 0, 1, 2, . . . . Thus the system of difference equations is mapped into a linear
difference equation in a Hilbert space. The price to be paid for linearity is that we have to
deal with Bose operators which are linear unbounded operators. Furthermore we have the
eigenvalue equations

b1|x1, x2, t〉 = x1,t |x1, x2, t〉

b2|x1, x2, t〉 = x2,t |x1, x2, t〉
for the states given above, since |x1,t , x2,t 〉 is a coherent state. Let K(x1, x2) be an analytic
function of x1, x2. Let K̂(b1, b2) be the corresponding operator. Thus we have

K̂(b1, b2)|x1, x2, t〉 = K(x1,t , x2,t )|x1, x2, t〉.
It follows that

[K̂, M̂]|x1, x2, t〉 = (K(x1,t+1, x2,t+1) − K(x1,t , x2,t ))|x1, x2, t + 1〉,
where [K̂, M̂] = K̂M̂ − M̂K̂ . Thus K̂ is an invariant, i.e.

K(x1,t+1, x2,t+1) = K(x1,t , x2,t ),

if [K̂, M̂] = 0.
As an example consider the logistic equation

xt+1 = 2x2
t − 1, t = 0, 1, 2, . . .

and x0 ∈ [−1, 1]. All quantities of interest in chaotic dynamics can be calculated exactly. The
logistic equation is an invariant of a class of second-order difference equations

xt+2 = g(xt , xt+1), t = 0, 1, 2, . . . .

This means that if the logistic map is satisfied for a pair (xt , xt+1), then xt+2 = g(xt , xt+1)

implies that (xt+1, xt+2) also satisfies the logistic map. In general, let

xt+1 = f (xt ), t = 0, 1, 2, . . .

be a first-order difference equation. Then this equation is called an invariant of xt+2 =
g(xt , xt+1), if

g(x, f (x)) = f (f (x)).
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We find that the logistic map is an invariant of the trace map

xt+2 = 1 + 4x2
t (xt+1 − 1).

The trace map plays an important role for the study of tight-binding Schrödinger equations
with disorder. This second-order difference equation can be written as a first-order system of
difference equations (x1,t ≡ xt , x2,t ≡ xt+1)

x1,t+1 = x2,t , x2,t+1 = g(x1,t , x2,t ).

After embedding the two maps into the linear unbounded operators M̂ and K̂ we can show
that [M̂, K̂] = 0 using the commutation relation given above.

Another example is the Fibonacci trace map

xt+3 = 2xt+2xt+1 − xt .

This map admits the invariant

I (xt , xt+1, xt+2) = x2
t + x2

t+1 + x2
t+2 − 2xtxt+1xt+2 − 1,

i.e. I (xt , xt+1, xt+2) = I (xt+1, xt+2, xt+3) for t = 0, 1, 2, . . .. The Fibonacci trace map can be
written as a system of three first-order difference equations. After embedding the two maps
into the linear unbounded operators M̂ and K̂ for I we find that [M̂, K̂] = 0, since I is an
invariant.

To summarize, we have shown that linear and nonlinear classical systems can be embedded
into a Hilbert space using Bose operators and Glauber coherent states. The states (for example
the states given by the first integrals) in this Hilbert space can be studied with respect to
entanglement using the reduced density operator and the von Neumann entropy. We can
extend the technique to (nonlinear) partial differential and difference equations [2, 3]. Here
the conservation laws appear as states in a Hilbert space and thus entanglement can be studied.
The extension of Glauber coherent states to generalized coherent states the so-called Klauder–
Perelomov and Gazeau–Klauder coherent states [17] would also be worthwhile to study.
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